Synthesis of Titanium Dioxide | Titanium Dioxide | Titanium

T1 - Synthesis and physical properties of the hollandite-type titanium oxide KxTi8O16

Synthesis of titanium oxide nanocups by …

Lithium titanium oxide (LTO: Li4Ti5O12) particles were produced via a continuous supercritical fluid process for use as anodes in lithium ion batteries. The synthesized LTO particles in supercritical water (scH2O) or in supercritical methanol (scMeOH) generate nanoparticles of 10–30 nm sizes, and the modified LTO particles using oleylamine in scMeOH affects the inhibition of particle growth. The modified LTO particle was coated by the usage of supercritical carbon dioxide (scCO2) and polyethylene glycol (PEG-400). The conformal coverage of the carbon layer on LTO particles with a thickness of 1.2 nm, and a uniform distribution of carbon on the entire surface of LTO particles are confirmed. The modified and carbon-coated LTO with a carbon content of 5.3 wt% exhibits a high discharge capacity of 175 mAh/g (which approaches the theoretical value of LTO) at 0.1 C and 83 mAh/g at 50 C. The carbon-coated LTO prepared using supercritical fluids delivered 160, 153, 123 mAh/g at 1 C and 60 °C, room temperature, and −25 °C, respectively.

Privacy Policy Contacts Categories pigment oxide Ads Channel Tag Cloud titanosauridae ...

Synthesis of brookite-type titanium oxide nano …

This paper describes the synthesis and characterisation of high-surface-area mesoporous titanium oxides with polypyrrole nanowires within the pores, and the subsequent variation of synthesis parameters such as polymer-loading level and pore size to improve performance. These modifications are employed to improve the electron conductivity of the amorphous host and exploit the high internal surface areas of over 800 m2g−1 for potential use as a lithium battery cathode material, once fully optimised, with fast charge-transfer kinetics expected from the proximity of the vast majority of the redox sites at, or near, the surface of the inner pore walls. A full structural characterisation, in addition to electrochemical assessments, of the composite materials is presented and compared to the pristine mesoporous titanium oxide hosts. The best synthesis conditions were achieved with 5 % polymer loading and the largest pore sized host materials. Excessive polymer loading and smaller pore sizes lead to decreased performance, possibly due to inhibition of Li+ transport. The C18 templated TiO2 composite produced the best capacity retention at 58 % retention, and the C12 composite produced the highest initial capacity of 170 mAh g−1 by using a current density of 1 mAcm−2.

In this report, the discovery of a new route for the synthesis of a nanotube made of titanium oxide is presented.

Ultra-thin superhydrophilic titanium oxide films were fabricated on silicon microchannels by an in situ reaction sol-gel method using titanium tetraisopropoxide as a starting material.. By changing the concentration of water in ethanol and reaction time, the thickness of synthesized TiO2 films can be controlled from around 10 nm to 80 nm. The contact angle of as-synthesized TiO2 films on flat silicon is around 20° and can be further decreased to zero by calcination at 700 °C in nitrogen atmosphere. X-ray diffraction spectra show the microstructure of the TiO 2 films changed gradually from amorphous to anatase with the increase of calcination temperature. Surface morphology of the film before and after calcination also shows that a smoother coating with crystal structure was obtained by heat treatment. The flow velocity in the TiO2 coated channel reached around 0.03 m/s, almost ten times of that in PDDA/PSS coated channel and 4 times of that in SiO2 coated one. The ultra-thin superhydrophilic TiO2 films fabricated by this method show the ability to strongly increase the wettability of microchannels without affecting the morphology of the sidewall of the channels, indicating potential applications to biomolecule analysis and surface tension driven microfluidic systems.

23/06/2007 · Titanium Dioxide Nanomaterials: Synthesis, Properties ..


Synthesis and characterization of anodized titanium-oxide …

AB - Ultra-thin superhydrophilic titanium oxide films were fabricated on silicon microchannels by an in situ reaction sol-gel method using titanium tetraisopropoxide as a starting material.. By changing the concentration of water in ethanol and reaction time, the thickness of synthesized TiO2 films can be controlled from around 10 nm to 80 nm. The contact angle of as-synthesized TiO2 films on flat silicon is around 20° and can be further decreased to zero by calcination at 700 °C in nitrogen atmosphere. X-ray diffraction spectra show the microstructure of the TiO 2 films changed gradually from amorphous to anatase with the increase of calcination temperature. Surface morphology of the film before and after calcination also shows that a smoother coating with crystal structure was obtained by heat treatment. The flow velocity in the TiO2 coated channel reached around 0.03 m/s, almost ten times of that in PDDA/PSS coated channel and 4 times of that in SiO2 coated one. The ultra-thin superhydrophilic TiO2 films fabricated by this method show the ability to strongly increase the wettability of microchannels without affecting the morphology of the sidewall of the channels, indicating potential applications to biomolecule analysis and surface tension driven microfluidic systems.

Nanostructured titanium oxide material and its synthesis ..

T1 - Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries

In-situ sol-gel synthesis of titanium dioxide-grap..

N2 - Ultra-thin superhydrophilic titanium oxide films were fabricated on silicon microchannels by an in situ reaction sol-gel method using titanium tetraisopropoxide as a starting material.. By changing the concentration of water in ethanol and reaction time, the thickness of synthesized TiO2 films can be controlled from around 10 nm to 80 nm. The contact angle of as-synthesized TiO2 films on flat silicon is around 20° and can be further decreased to zero by calcination at 700 °C in nitrogen atmosphere. X-ray diffraction spectra show the microstructure of the TiO 2 films changed gradually from amorphous to anatase with the increase of calcination temperature. Surface morphology of the film before and after calcination also shows that a smoother coating with crystal structure was obtained by heat treatment. The flow velocity in the TiO2 coated channel reached around 0.03 m/s, almost ten times of that in PDDA/PSS coated channel and 4 times of that in SiO2 coated one. The ultra-thin superhydrophilic TiO2 films fabricated by this method show the ability to strongly increase the wettability of microchannels without affecting the morphology of the sidewall of the channels, indicating potential applications to biomolecule analysis and surface tension driven microfluidic systems.