CH 351L Inorganic Chemistry Lab: 1: Approaches to synthesis of ..

Lab component: Synthesis and characterization of coordination compounds.

Department of Chemistry | UMass Amherst

Dr. Shah Mohd Ashraf after completing doctorial studies in Condensed Matter Physics, was appointed as Assistant Professor in National Institute of Technology Srinagar in year 1999. Here, Shah embarked upon new research programme, pioneered the synthesis of broad range of nanomaterials and established World Bank Funded Research Centre (Special Centre for Nanosciences) and laid the foundations to learn the new sciences-Nanotechnology in early twenties. In year 2009, shah moved to Middle East on deputation for a short period of two years and published book titled, "Principles of Nanoscience & Nanotechnology" with Dr. T. Ahmad, an eminent Chemist. Dr. Shah is teaching Nanotechnology, Materials Science and Materials Characterization from the last two decades and is actively engaged as reviewer /editor of many scientific journals. Shah has authored more than 75 international peer reviewed scientific papers in National and International journals and has written 5 Books on Nanotechnology and many Book Chapters with reputed international publishers. In his research, he has targeted bio-compatible and energy harvesting nano-materials, which has applications in day to day life. Shah has been awarded two major projects by the Govt of India under Nano-Mission and leadership qualities in taking lead role in innovative programmes have been acknowledged on many occasions. Shah has delivered invited talks in number of international forums. Dr. shah is also a member of many science academies and societies and his work has been cited by number of scientific reporters as well as scientific media. Organiser and Chair of several national and international symposia, schools and conferences which includes 3rd Int. Conference on "Nanotechnology for Better living" from 25-29 May 2016 in collaboration with IIT Kanpur. In his spare time, Dr. Shah is regularly organising INSPIRE internship programme launched by Hon’ble Prime Minister of India for the bright and genius students of the Kashmir Valley, which aims to attract talented students for the study of Science and Technology in early age which ultimately will bring peace across the globe.

Glossary | Linus Pauling Institute | Oregon State University

The study of semiconductor nanocrystals (NCs) is a very active research field, due to the wide range of applications, related to light-emission and absorption, photodetection, solar cells, light emitting diode or tunable emitters for bio-labeling1. One area is the development of detection techniques with high spatial resolution enabled by the small size of nanomaterials. As a representative example, nanometer probes of temperature can be very useful to obtain an accurate local value of temperature, particularly in catalysis where the activity and selectivity are temperature dependent. The key is to obtain the value of the local temperature inside the solution or inside the solid at the surface of the reactants. Certain catalytic reactions require high temperatures to occur so another challenge is to build a high local temperature probe (> 373 K). In this context, semiconductor NCs are promising objects to provide this precision due to the temperature dependence of their optical properties. We present here the synthesis of different types of NCs (Cd3P22, InP@ZnS3 and CdSe@CdS4), their capacities as nanothermometers for high temperatures (>340 K) and the conditions which have to be fullfilled for accurate measurements. Different parameters such as the wavelength, the intensity, the area and the full width at half maximum of emission were studied as a function of temperature. The studied temperatures ranges from room temperature to 540 K and the comparison between the different NCs is discussed.

For example, ironcomplexes are used in the transport of oxygen in the blood andtissues.Metal-ion complexes consist of a metal ion that is bonded via"coordinate-covalent bonds" (Figure 1) to a smallnumber of anions or neutral molecules called ligands.

The Yu Lab - The Scripps Research Institute

Dr. Catherine Dendrinou-Samara is Professor and Director of Inorganic Chemistry Lab., Faculty of Chemistry, Aristotle Univ. of Thessaloniki, GREECE. She obtained her PhD thesis in 1992 from Aristotle Univ. of Thessaloniki while she was visiting Researcher at Inorganic Chemistry Lab of Freie Universitaet Berlin and The Manchester University, UK. Her research interest are on synthesis and characterization of a variety of inorganic compounds and materials ranging from mononuclear complexes to polynuclear one and farther to nanoscale particles that permits to investigate magnetic properties and biomedical applications. She works on controlled synthesis through wet chemical approach of magnetic spinel ferrite nanoparticles for Imaging Diagnostics (MRI) and Therapeutics (Drug carriers, Hyperthermia); Bioactivity of Cu-based nanoparticles and Bimettallic nanostructures. She has an h-index of 30 for 80 indexed publications, with >2600 citations(Scopus).

General & Introductory Chemistry

We report the synthesis and evaluation of several unnatural ribotriphosphates bearing linkers that allow the chemoselective attachment of different functionalities. One unnatural base pair is used to dual label a 243-nt fragment of a 16S RNA with Cy3 and Cy5, which are then used to characterize conformational changes in the presence of ribosomal proteins.

Metal Complex in the Blood - Washington University in …

Prof. Nana Zhao obtained her B. S. in Applied Chemistry in 2003 from Shandong University, and Ph.D. in Physical Chemistry in 2008 from Peking University. From 2008 to 2010, she worked as a Postdoc Fellow in Department of Polymer and Material Chemistry at the University of Toronto, Canada. After another two years’ post-doctoral work in Division of Materials Science at Lawrence Berkeley National Laboratory, she joined Beijing University of Chemical Technology in 2012. She has published over 20 publications in well-known international journals such as Chem. Soc. Rev., Angew. Chem. Int. Ed., Nano Lett., and Adv. Mater. et al. Prof. Zhao has her expertise in strategic design, controlled synthesis, and biomedical applications of organic/inorganic nanohybrids, including diagnosis of diseases, gene delivery, controlled drug-release, and imaging. Integrating the control over morphology, surface functionalization, and self-assembly strategies, the performance of nanohybrids could be improved further.