How to calculate the heating value, HHV-LHV, of natural gas?

What is Syngas Syngas is an abbreviation for synthesis gas, which is a ..

14 thoughts on “How to calculate the heating value, HHV-LHV, of ..

1. Direct Fired or Conventional Steam Boiler
Most of the woody biomass-to-energy plants use direct-fired system or conventional steam boiler, whereby biomass feedstock is directly burned to produce steam leading to generation of electricity. In a direct-fired system, biomass is fed from the bottom of the boiler and air is supplied at the base. Hot combustion gases are passed through a heat exchanger in which water is boiled to create steam.

26/12/2017 · Production of synthesis gas by steam ..

"Ultimately our objective is to displace more than 90 percent of the plant's natural gas requirement."
But what if the goal of the ethanol producer or pulp and paper mill owner is to produce a rich syngas for the production of electricity?

Syngas has 50% of the energy density of natural gas. It cannot be burnt directly, but is used as a fuel source. The other use is as an intermediate to produce other chemicals. The production of syngas for use as a raw material in fuel production is accomplished by the gasification of coal or municipal waste. In these reactions, carbon combines with water or oxygen to give rise to carbon dioxide, carbon monoxide, and hydrogen. Syngas is used as an intermediate in the industrial synthesis of ammonia and fertilizer. During this process, methane (from natural gas) combines with water to generate carbon monoxide and hydrogen.

The recovery of heat from the synthesis gas exiting an ammonia ..

Gasification can also be used to create substitute natural gas (SNG) from coal and other feedstocks, supplementing U.S. natural gas reserves. Using a "methanation" reaction, the coal-based syngas—chiefly carbon monoxide (CO) and hydrogen (H2)—can be profitably converted to methane (CH4). Nearly identical to conventional natural gas, the resulting SNG can be shipped in the U.S. natural gas pipeline system and used to generate electricity, produce chemicals/fertilizers, or heat homes and businesses. SNG will enhance domestic fuel security by displacing imported natural gas that is generally supplied in the form of Liquefied Natural Gas (LNG).

Autothermal reforming of methane to synthesis gas: ..

Gasification is a flexible, reliable, and clean energy technology that can turn a variety of low-value feedstocks into high-value products, help reduce our dependence on foreign oil and natural gas, and can provide a clean alternative source of baseload electricity, fertilizers, fuels, and chemicals.


Hydrogen, one of the two major components of syngas, is used in the oil refining industry to strip impurities from gasoline, diesel fuel, and jet fuel, thereby producing the clean fuels required by state and federal clean air regulations. Hydrogen is also used to upgrade heavy crude oil. Historically, refineries have utilized natural gas to produce this hydrogen. Now, with the increasing price of natural gas, refineries are looking to alternative feedstocks to produce the needed hydrogen. Refineries can gasify low-value residuals, such as petroleum coke, asphalts, tars, and some oily wastes from the refining process, to generate both the required hydrogen and the power and steam needed to run the refinery.

Synthesis gas production by the solar gas process …

The Fischer-Tropsch process is one of the advanced biofuel conversion technologies that comprise gasification of biomass feedstocks, cleaning and conditioning of the produced synthesis gas, and subsequent synthesis to liquid (or gaseous) biofuels. The Fischer-Tropsch process has been known since the 1920s in Germany, but in the past it was mainly used for the production of liquid fuels from coal or natural gas. However, the process using biomass as feedstock is still under development. Any type of biomass can be used as a feedstock, including woody and grassy materials and agricultural and forestry residues. The biomass is gasified to produce synthesis gas, which is a mixture of carbon monoxide (CO) and hydrogen (H2). Prior to synthesis, this gas can be conditioned using the water gas shift to achieve the required H2/CO ratio for the synthesis. The liquids produced from the syngas, which comprise various hydrocarbon fractions, are very clean (sulphur free) straight-chain hydrocarbons, and can be converted further to automotive fuels. Fischer-Tropsch diesel can be produced directly, but a higher yield is achieved if first Fischer-Tropsch wax is produced, followed by hydrocracking. Fischer-Tropsch diesel is similar to fossil diesel with regard to a.o. its energy content, density and viscosity and it can be blended with fossil diesel in any proportion without the need for engine or infrastructure modifications. Regarding some fuel characteristics, Fischer-Tropsch diesel is even more favourable, i.e. a higher cetane number (better auto-ignition qualities) and lower aromatic content, which results in lower NOx and particle emissions.