SYNTHESIS AND SELF-ORGANIZATION OF GOLD NANOPARTICLES …

Synthesis of Magnetite Nanoparticles by Precipitation with Forced Mixing Y. Zhu and Q. Wu. (China)

Synthesis and self-organization of soluble …

Stable linkages between nanoparticles and functional moieties may be provided by iodoacetate linkers. Using this linker, Zhang synthesized a CTX-mediated brain tumor targeting magnetic/optical nanoprobe []. As shown in Figure , amine-functionalized nanoparticles were prepared by synthesizing a PEG-grafted chitosan polymer. Methoxy-PEG was oxidized to yield PEG-aldehyde, which was then reacted with the primary amines of depolymerized chitosan by formation of a Schiff base. Subsequently, iron oxide nanoparticles were coated with a PEGylated chitosan-branched copolymer (NPCP). SATA-pretreated CTX was then conjugated to the nanoparticles via an SIA cross-linker. The nanoparticles were linked to fluorescence imaging dyes by conjugating the amine groups remaining on the iron oxide nanoparticles to a Cy5.5 NHS ester, producing NPCP-Cy5.5-CTX as a brain tumor targeting magnetic/optical nanoprobe.

T1 - Synthesis of magnetic nanoparticles and their application to bioassays

Synthesis of porous platinum nanoparticles — …

N2 - Magnetic nanoparticles have been attracting much interest as a labeling material in the fields of advanced biological and medical applications such as drug delivery, magnetic resonance imaging, and array-based assaying. In this review, synthesis of iron oxide magnetic nanoparticles via a reverse micelle system and modification of their surface by an organosilane agent are discussed. Furthermore, as a practical biological assay system, the magnetic detection of biomolecular interactions is demonstrated by using the combination of a patterned substrate modified with a self-assembled monolayer and the magnetic nanoparticles.

Vortex fluidics synthesis of polymer coated superparamagnetic magnetite nanoparticles.

Ellington . used this bioconjugation method to conjugate an anti-EGFR aptamer onto GNPs to demonstrate the targeting specificity of a newly identified aptamer []. As described above, they coated GNPs with thiol-modified capture ONTs that hybridized to an extended anti-EGFR aptamer to generate anti-EGFR aptamer-conjugated GNPs. Jon . utilized the hybridization method to conjugate an anti-PSMA-aptamer to iron oxide nanoparticle surfaces []. In their study, CG-rich duplexes were constructed at the ends of the aptamers to achieve multiple Dox-binding on the nanoparticles. They immobilized amine-functionalized capture ONTs (5'NH2-A10-(TCG)7-3') on the surfaces of the carboxyl-modified iron oxide nanoparticles. Magnet purification yielded the capture ONT-coated iron oxide nanoparticles. A (CGA)7-extended anti-PSMA-aptamer was synthesized by transcription, and the aptamers were added to the ONT-coated nanoparticles to produce Apt--TCL-SPIONs. Thermal gravimetric analysis (TGA) indicated that PSMA aptamers (28,451 Da) hybridized to approximately 33% of the ONTs (9,708 Da) conjugated to the nanoparticles. aptamers capture ONTshe surface of nanoparticles via staining in larger samples (106 cells).ons [nitude highenn


Green Synthesis of Metallic Nanoparticles via ..

Ross . developed brain cancer-targeted multifunctional polymeric nanoparticles consisting of tumor vascular targeting F3 peptides, photosensitizers for photodynamic therapy (PDT), and iron oxide for MRI []. The targeted delivery of photodynamic agents to tumor sites via nanoparticles is one approach to overcoming the disadvantages of prolonged cutaneous photosensitization during PDT. To conjugate targeting peptides onto the nanoparticles specifically, first, amine-functionalized, photofrin and iron oxide-encapsulated polyacrylamide nanoparticles were preparede nanoparticles apsulated consisting of a surface-localized rgeting. , and the water-soluble sulfo-SMCC was added to couple with surface amines on nanoparticles. The reaction mixture was further treated with succinimidyl succinate ester of PEG2000. And the thiol groups of F3 peptides, pretreated with Traut's reagent, were lastly conjugated to the maleimide-functionalized nanoparticles. The targeted nanoparticles performed well during PDT and significantly improved survival rate in a glioma-bearing orthotopic rat model. SMCC may be replaced by heterobifunctional PEG molecules (NHS-PEG-MAL) to functionalize amine-modified nanoparticles. Zhang . used NHS-(PEG)2-MAL and NHS-(PEG)12-MAL to introduce maleimide functionalities onto the magnetic nanoparticles []. A thiol-modified siRNA and CTX were attached to the amine-functionalized pH-sensitive PEI-coated iron oxide nanoparticles via NHS-(PEG)2-MAL and NHS-(PEG)12-MAL, respectively (Figure A). The dodecaethyleneglycol linker for CTX facilitated targeted ligand delivery by providing a more flexible linker, thereby enhancing the peptide's ability to bind to a target receptor. pH-sensitive surface coating layers improved the presentation and availability of cationic CTX on the nanovector surfaces by introducing electrostatic charge repulsion between CTX and surface moieties (Figure B).

Synthesis of Nickel Oxide (NiO) nanoparticles and cobalt oxide ..

Recently, Chen and Sun used the Mannich reaction to couple biomolecules to nanoparticles []. In this work, iron oxide nanoparticles functionalized with active hydrogen groups were reacted with amine group-containing cyclic RGD peptides to develop ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles (with an 8.4 ± 1.0 nm hydrodynamic diameter) as tumor-targeted imaging agents. Nonspecific uptake of the iron oxide nanoparticles by RES in the blood stream complicates the development of small biocompatible nanoparticles with targeting capabilities. Initially, they synthesized Fe3O4 nanoparticles via the thermal decomposition of Fe(CO)5 in benzyl ether in the presence of 4-methylcatecol, as a surfactant, followed by air oxidation. The 4-methylcatecol formed a tight thin coating layer over the nanoparticle surface via formation of a strong chelating bond between the iron and the catechol unit. The aromatic ring of the 4-methylcatecol on the nanoparticles was directly coupled with the amine group of a lysine residue in the cyclic RGD peptide, c(RGDyK) (Figure ). High-resolution transmission electron microscopy (HRTEM) images of the nanoparticles indicated an iron oxide core size of 4.5 nm and a coating layer containing the c(RGDyK) peptide 2 nm in thickness, close to the size in water.