How to Set Up a Hypothesis Test: Null versus Alternative

The , , is a statement of what a statistical hypothesis test is set up to establish.

the null hypothesis is rejected when it is true b.

If the null hypothesis were true (i.e., no change from the prior year) we would have expected more students to fall in the "No Regular Exercise" category and fewer in the "Regular Exercise" categories. In the sample, 255/470 = 54% reported no regular exercise and 90/470=19% reported regular exercise. Thus, there is a shift toward more regular exercise following the implementation of the health promotion campaign. There is evidence of a statistical difference, is this a meaningful difference? Is there room for improvement?

m) Ifyou get a p-value of 0.13, it means thatthe null hypothesis is true in 13% of all samples.

the null hypothesis is not rejected when it is false c.

If we conclude "do not reject ", this does not necessarily mean that the null hypothesis is true, it only suggests that there is not sufficient evidence against in favor of ; rejecting the null hypothesis then, suggests that the alternative hypothesis may be true.

Click the link the skip to the situation you need to support or reject null hypothesis for:

The test is called the χ2 test of independence and the null hypothesis is that there is no difference in the distribution of responses to the outcome across comparison groups. This is often stated as follows: The outcome variable and the grouping variable (e.g., the comparison treatments or comparison groups) are independent (hence the name of the test). Independence here implies homogeneity in the distribution of the outcome among comparison groups.

Broken down into English, that’s H0 (The null hypothesis): μ (the average) = (is equal to) 8.2

the null hypothesis is probably wrong b.

We now compute the expected frequencies using the sample size and the proportions specified in the null hypothesis. We then substitute the sample data (observed frequencies) into the formula for the test statistic identified in Step 2. We organize the computations in the following table.

the null hypothesis is probably true d.

The primary goal of a statistical test is to determine whether an observed data set is so different from what you would expect under the null hypothesis that you should reject the null hypothesis. For example, let's say you are studying sex determination in chickens. For breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than male chicks, so if you could figure out a way to manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've fed chocolate to a bunch of female chickens (in birds, unlike mammals, the female parent determines the sex of the offspring), and you get 25 female chicks and 23 male chicks. Anyone would look at those numbers and see that they could easily result from chance; there would be no reason to reject the null hypothesis of a 1:1 ratio of females to males. If you got 47 females and 1 male, most people would look at those numbers and see that they would be extremely unlikely to happen due to luck, if the null hypothesis were true; you would reject the null hypothesis and conclude that chocolate really changed the sex ratio. However, what if you had 31 females and 17 males? That's definitely more females than males, but is it really so unlikely to occur due to chance that you can reject the null hypothesis? To answer that, you need more than common sense, you need to calculate the probability of getting a deviation that large due to chance.

One can never prove the truth of a statistical (null) hypothesis.

After you do a statistical test, you are either going to reject or accept the null hypothesis. Rejecting the null hypothesis means that you conclude that the null hypothesis is not true; in our chicken sex example, you would conclude that the true proportion of male chicks, if you gave chocolate to an infinite number of chicken mothers, would be less than 50%.

failing to reject the null hypothesis when it is false.

Usually, the null hypothesis assumesthat that the mean of these differences is equal to 0, while the alternativehypothesis claims that the mean of the differencesis not equal to zero (the alternative hypothesis may be one- or two-sided,depending on the experiment).